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The paper examines the scattering properties of a cavitated line vortex when 
excited by line and point sources of sound. It is found that the vortex resonances 
discovered by Kelvin for incompressible flow are essentially unmodified by fluid 
compressibility, and that many of the resonant modes radiate energy to infinity. 
Those resonant modes dominate the vortex response, their amplitude growing 
algebraically with time in a driven instability of the model flow. 

The off resonance response is dependent on the value of a normalized frequency 
parameter ( W / Q ) ~  Ilnkal. s1 denotes the angular velocity of the steady vortex 
flow, k the acoustic wave-number, and a the cavity radius. Even off resonance 
the cavity is an extremely efficient wave scatterer, the scattering efficiency in- 
creasing with source order. For example, the scattered energy of a point quad- 
rupole is shown to exceed that of the direct field by a factor of lo8 for the typical 
underwater flow Mach number of 10-2. 

Introduction 
The object of this paper is to consider the scattering properties of a cavitated 

line vortex which is excited by external line and point multipole sources of sound. 
Previous studies (Ffowcs Williams 1969; Ffowcs Williams & Hunter 1970) of the 
scattering by bodies and cavities, in particular by resonant cavities, indicate 
that the acoustic output of a source can be substantially increased by the 
presence of nearby scattering centres. The effect is more pronounced for multipole 
sources. This is confirmed in what follows. 

The equilibrium vortex flow consists of a steady velocity q(x), which has 
components (0, y/r,  0) ( r  > a > 0) in cylindrical polar co-ordinates. At the cavity 
wall, r = a, the inertial pressure balances the hydrostatic pressure. In  the un- 
steady state, a small irrotational velocity, ZL;(X, t )  = V, Q, is superposed on the 
mean flow. It is then required that the material derivative of the pressure should 
vanish on the cavity wall, the cavity being a constant pressure zone. A solution 
is now sought where the perturbation satisfies a radiation condition in the form 
of outgoing waves a t  infinity. 

The flow field is characterized by two parameters: the Mach number, H = U/c  
(U  = y /a) ,  and a Strouhal frequency S, which measures frequencies on the natural 
frequency scale i2 = U/a.  The equations of motion for a periodic perturbation 
at frequency o = kc can be linearized to give Helmholtz’s equation (V2 + k2)  @ = 0 

43-2 
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if M2S = Mka < 1, and M < 1. This scattering equation is solved in cylindrical 
polar co-ordinates for various source configurations. In  doing this, we confirm 
Kelvin’s (1910) deduction that, at low wave-numbers, ka .g 1, the cavity has no 
axially symmetricresonance, but has resonances at  frequencies w, = (m & 1ml.t) Q, 
(m + 0 ) ,  for asymetric modes with aximuthal period 2n/m. The angular phase 
velocity of the resonant perturbation field is always with the mean flow. We 
find it surprising that Kelvin’s conclusions are unmodified by fluid compres- 
sibility. The resonant modes are undamped by the radiation loss, so that the 
mean flow must be giving up energy to maintain the resonance, and this effect 
is unnoticed on a linear theory. In  this respect, those free waves are similar to 
Miles’s (1958) radiating neutral waves on a supersonic shear layer, which gives 
rise to an infinite acoustic scattering cross-section. The vortex resonances give 
rise to similar infinities in the acoustic field, and would no doubt lead to break- 
down of the primary flow. 

We confirm this idea by studying an initial value problem where the vortex is 
disturbed from rest by a point impulse. The resonant modes are excited, and 
survive indefinitely, even though energy is constantly being lost to their acoustic 
field. The response of a vortex to a periodic disturbance switched on at  time 
t = 0 is shown to be a superposition of resonant modes, each with amplitude 
increasing algebraically with time. The driven instability is therefore not violent, 
but must lead inevitably to a breakdown of the model flow. 

The resonant response is the primary feature of the flow, but very large 
scattered fields can be excited at  non-resonant conditions. These cases are worked 
out in detail for point multipole excitation of the vortex flow. 

The two-dimensional field scattered by a line vortex 
The inviscid fluid flow equations may be written: 

1 DP au, +- = 0, _ _ _  
p Dt ax, 

where it is assumed that disturbances are of small amplitude, so that V p  can 
be approximated by c2Vp, c being the assumed constant speed of sound. The 
symbol D/Dt denotes the material derivative. 

Equations (1) and (2) can alternatively be written 

D au, 
Dt ax, 
--lnp+- = 0, 

DU, a - +c2- lnp = 0. 
Dt ax, 

(3) 

(4) 

These equations can be combined, by way of cross-differentiation, to yield an 
equation which is independent of the fluid density p :  
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We consider a small perturbation velocity u;(x,t), given by the gradient of a 
potential function @(x, t), superposed on the mean flow 

Ui(Xi, t )  = V,(Xi) + u;(xj, t). (6) 

Equation (5) then yields an inhomogeneous wave equation for the velocity 
perturbation, which reduces to the homogeneous wave equation, provided the 
Mach number and Strouhal number of the flow satisfy 

H2S< 1, H <  1. (7) 

Under those conditions (5) becomes 

or, if CD is supposed time periodic of period 27r/w, 

V2@+k2@ = 0 (k = o/c). (9) 

In  a cylindrical co-ordinate system, (9) has the form, 

a w  i a ~ ~  1 a w  a w  -+- -+--+--+P@ = 0. 
ar2 r ar r2 ax2 

For a two-dimensional flow, which is cylindrically symmetric, (10) can be solved 
to give 

The radiation condition at  infinity requires that @(r,t) be given by either 
AHdl)(kr) exp ( - iwt) or BH,(2)(Icr) exp (iwt).  We choose the former, so that 

@(r,t) = [AHo'l)(kr)+BH62)(Icr)]exp ( k  iot). (11) 

@(r, t )  = AHJl) (kr)  exp ( - iot). 

PIP0 + +Y21r2 = PolPo, 

(12) 

(13) 

Consider a constant density steady potential vortex flow, for which Bernoulli's 
equation is 

y being the vortex strength, and po the pressure at infinity. 
If the vortex is cavitated with p = 0 on the cavity wall, r = a, then 

(14) L Z  2 
2Y /a  = PolPo. 

Now consider small unsteady motion about the steady state, forced by an un- 
steady ambient pressure. The unsteady Bernoulli equation now describes the 
flow, 

where po  + I ,  exp ( - iwt) is the pressure at infinity and p = po +p'. 
The linearized form of the Bernoulli equation is 

p a@ -+p+&pop Y 2  =po+pexp(-iwt). 
O at 

The boundary condition on the cavity wall requires that 

ap a@ ap 
at ar ar 
- + - - = O ,  on r = a .  
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Equation (13) can be used to specify aplar, so that 
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The equation for the eigenfrequencies is thus 

If the cavity radius is much less than a wavelength, it is appropriate to consider 
the asymptotic form of the Hankel function for small argument: 

(20) 
2i 

Ho(ka) N -1nka (ka 4 1).  
7r 

Equation (19) then yields 

This equation has only the trivial solution ka = 0, so that the present system 
restricted by the conditions (7) has no non-zero natural frequency, and the 
cavity has no axially symmetric resonant mode. 

The amplitude of the scattered field is given by (18) as 

a result depending on the magnitude of the non-dimensional parameter 

(w/Q)21n ka, 

the significance of which may be demonstrated as follows. 
If the cavity is considered to exist in purely static fluid, with no vortex to 

maintain it, i.e. if it is merely a cylindrical bubble, then in order to maintain a 
symmetric radial velocity v, at the bubble boundary, a pressure p must be 
maintained there. The impedance of the cavity as a bubble, zl, is the ratio plv,, 
given by the solution to the exterior compressible problem as 

x1 = p/v ,  = = iawpoln ka. & I L  
On the other hand, if the fluid inertia and compressibility do not control the 
motion, the cavity is more aptly considered as a steady incompressible vortex 
field changing its equilibrium radius in response to a slowly varying external 
pressure. The ratio of pressure to normal velocity at the cavity boundary in this 
case is again an impedance, whose value x2 can be computed from the equilibrium 
equation, 

- - = -  1 Y 2  Po 
2a2 Po’ 

aa 
v =-=-  iwAa, 

at (24) 
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and 

The ratio of the two impedances then indicates which effect is dominant in 
determining the cavity response to an external field. The ratio Iz,/xzl is the 
parameter (~/ !2)~ IlnEal, which appears in (22). For low values of this para- 
meter, the flow is controlled by the steady vortex, while at  high values it is con- 
trolled by the inertia and compressibility of the external flow, in precisely the 
same manner as is a passive cylindrical bubble. 

When inertial effects are negligible, i.e. (w/Q)z Iln 7ca( < 1, then the potential 
0 is given in the following form, 

n wji a 4  

2 Po Y 2  
@ ( r )  = - - - Ho(kr) exp ( -id), 

while in the other limit, (w/@)2 IlnkaI & 1, 

n w p  1 
2 po d l n k a  

@(r)  = - - ___ H,( kr) exp ( - iwt) . 

The scattered pressure fields in these two cases are 

ni 2- - 2 4  PW = y f l  P ( Tkr)  exp [i(kr - ~ / 4 ) 1  

and 

p ( r )  = - ~ 

exp[i(kr-lr/4)](kr+co7 (g)zllnka] $ l ) ,  

wc oa u 
c u - c  

i & , = - = - - - = M f l .  

If 11, the amplitude of the unsteady pressure field that drives the motion, is 
taken to be that due to a source of strength &/4i, distance E away from the cavity 
centre, then 

It is seen that for a wavelength large compared to the radius of the cavity, i.e. 
ka < 1, the scattered field is of order S2\ln i&,) times the direct field if 

(30) 1? = (@Po/4) &Ho(kE). 

( w / W ] l n q  < 1, 

whereas the scattered and direct fields are of the same order when 

(w/Q)2Ilnkal B 1, 

provided the distance of the source from the cavity centre is of the same order 
as the radius of the cavity. 

Now we consider an incident field due to  a line dipole. 
The pressure field in this case is given as follows; for large kr, 
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and the amplitude of the dipole near field, p ,  is 
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which becomes, for small values of kc ,  

We find that for kr + GO, the amplitude of the scattered field is of order X2/ka, 
or l / (ka lnka)  times the direct field, depending on whether ( W / Q ) ~  11nkal << 1, or 

1, respectively, provided again that the distance 6 is of the same order of 
magnitude as the cavity radius. 

The scattering of a quadrupole field is found in a similar way. The far pressure 
field is given as 

The amplitude of the quadrupole near field, ?J, is, in this case, 

For the large wavelength limit, kc < 1, this becomes 

From (36) it  can be seen that the amplitude of the scattered field is of order 

times the direct field when ( W / Q ) ~  Iln kal is respectively small or large compared 
to unity and 5 - a. 

To give an indication of the magnitude of this effect consider the limit 
(wlS2)Z IInkal < 1. Since M S  = ka, this limit implies small values &f Strouhal 
number compared to unity. Then, for a Mach number the scattered field 
exceeds the direct field in mean square pressure by a factor in excess of los. 

Three-dimensional scattering of point source fields 
Because cavities exist near inhomogeneous source systems, where the source 

is essentially three dimensional, and since axial dependence is naturally expected, 
it is more realistic to examine the scattering properties of the cavity when the 
incident field is that due to a point source, dipole, or quadrupole. A solution is 
desired in the case of rapid variation of the field on the scale of the cavity, so 
that it is necessary to find an exact solution to the three-dimensional problem. 
It is assumed here that the flow is restricted by conditions (7), so that, as before, 
the relevant equation of motion is (9). 
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Equation (9) assumes the following form in cylindrical polar co-ordinates: 

68 1 

Solutions to this equation are well known, and, if multivalued solutions, and 
solutions with linear growth are excluded, then @(r,  $, z )  can be written as 

w m  

@(r,  $, z )  = 1 C ,!?,(a) H$.)(pr) exp (imq5) exp ( i az )  exp ( - iwt)  da, (38) 
-m -m 

,!?,(a) being the amplitude of each mode, and where 

p = +(k2-a2)4 (0 < a < k) 

= +i(a2-k2)4 (k < a < a). (39) 

The first kind of Hankel functions have been chosen in (38), in accordance with 
the radiation condition, and in what follows the superscript will be omitted, 
it being understood that the symbol Hm(/3r) means an mth-order Hankel function 
of the first kind. 

The field of a point source situated at  (x0, yo, 0) is given by 

@(r, $, z )  = exp (ikR)/R, 

R2 = (X - x ~ ) ~  + (y - yo)2 + z2. 

(40) 

(41) where 

It is appropriate to consider the Fourier transform with respect to x of the 
function @, 

- 
$(r ,  $,a) = TiHO(P4 (43) 

(44) 

The zeroth-order Hankelfunction Ho(/3u) can now be expanded (Morse& Feshbach 

(Erdelyi, Magnus & Oberhettinger 1954), where 

a2 = (x-x0)2+(y-yo)2 = lr-rol? 

which enables one to write @(r,  4, x )  as 

(46) 
When the source has arbitrary strength - 2iQ, the field can be written as 

Equation (47) expresses the field of the point source in terms of the natural 
functions of the cavity, thus enabling the matching of both fields on the cavity 
wall to be performed easily. 
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The linearized Bernoulli equation appropriate to the three-dimensional 
problem, where axial symmetry is no longer assumed, is 

In (48), 0 represents the superposed potential due to the direct and scattered 

fields c a m  

@ = 1 x [BrnHm(pr) + &Jrn(pr) ~ r n ~ o ) ~  
-03 - -m 

x exp [im(# - #*)I exp (iaz) exp ( - iwt) da ( r  < yo). (49) 

The requirement, that the material derivative of the pressure should vanish, 
gives a unique value for B,, the amplitude of each mode of the scattered field: 

When the distance of the source from the cavity centre is of the same order as 
the radius of the cavity, i.e. ro N a, then, for pa < 1, this becomes 

It follows from (52) that 5~ resonance is possible for modes corresponding to 
non-zero integers at  a frequency given by 

w, = (mk  Iml4) 0. (54) 

Since the resonant frequency w,, given by (54)) changes sign with m, it follows 
that the angular phase velocity of the resonant perturbation field is always with 
the mean flow. No resonance of the volume pulsation mode, m = 0, can occur, 
a point already clear from (2 1). It is seen from (54) that at  the resonant condition, 
the angular phase velocity exceeds that of the mean flow, and increases with 
mode order. These resonances are precisely those found by Kelvin for a hollow 
vortex in incompressible flow. Our expectation that the acoustic energy loss 
u7ould stabilize those modes was not realized, so that the resonant modes emerge 
as the dominant feature of the radiation field. We shall return to this point later 
to show how these resonances can be driven to high amplitude where the flow 
model must fail. 

The contribution to the scattered field of modes corresponding to m = 1, 2 ,3 ,  . . . 
is 

I = C 1 B,H,(pr) exp [im(# - #0) ]  exp (iaz) exp ( - iwt) da, (55) 

where B, has the value given in (52). If ( w / 0 )  has none of the resonant values, 

m m  

m = l  - w  
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then B,, the amplitude of each scattered mode, is bounded for all m, and, for 
pa < 1, ( 5 5 )  can be shown to be of order 

exp (ikr) 
I - (7) 

by stationary phase integration, for large values of kr. 
It can be seen from (53) that the radiation from the volume pulsation mode, 

m = 0,  is like Q exp ( ikr) / r  for large kr, so that the scattered and direct fields are 
of the same order, the scattered field being dominated by the volume pulsation 
mode. The contribution from all other modes can be seen to be an order of 
magnitude less. If the parameter ( w / Q ) ~  Iln kul has value unity, then there is no 
radiation from the volume pulsation mode, as follows from (53). 

If surfaces are present in the flow, as in the case of an underwater propeller, 
then the incident field is dipole induced, and may be given by 

The scattered field can be computed in exactly the manner described above, and 
the amplitude of each scattered mode is found to be (ro - a, pa < 1) 

As before, the contribution from modes corresponding to non-zero integers can 
be shown to be at  least an order of magnitude less than that of the volume 
pulsation mode m = 0, which gives the following long wavelength comparison 
of scattered, Qs, and direct, OD, fields (kr -+ co) 

If the dipole axis is tangential to the vortex flow, the potential field is given by 

Then if, ro - a, pa < 1, the amplitude of each scattered mode is calculated to  be 

Bo = 0. (64) 

It is seen that the scattered and direct fields are of equal order for large values of 
kr ,  with no radiation from the volume pulsation mode. 
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When the incident field of an axial dipole, i.e. 

is considered, the amplitude of each scattered mode is found to be (pa < 1, ro N a )  

When the scattered field is evaluated by an integral analogous to  (55 ) )  the 
stationary point of the integral is found to be at  

a = lccose (68) 

for large values of r and z ,  8 being the polar angle at the observation point. It is 
seen that, provided the parameter (w/Q)2]ln(kasin 181)l is not of order unity, 
the symmetric volume pulsation mode scatters to infinity a field of strength 
equal to the incident field. When Iln (kasin 181)1 is of order unity, the 
scattered field vanishes to within O(ka).  

Suppose now that the vortex is driven by a region of turbulence. In this case, 
the incident field would be quadrupole with typical potential 

The amplitude of each scattered mode is calculated to be 

The volume pulsation mode m = 0 dominates the scattered field, giving the 
following ratio of scattered, CD,, to  direct, a,, fields (kr + 00): 

When the axes of the quadrupole are along the radius and the z-axis respectively, 
i.e. 

the amplitude of each scattered mode is found as follows: (pa < 1, ro N a)  
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Analogous to the case of an axial dipole, it follows that, when 

(w/Q)2 Jln (kasin 16'1) 1, 

685 

the scattered field strength is of order ( l /ka)  times the direct field, while, for the 
other limit, ( U / Q ) ~  Iln(kasin JSl) l  1, the scattered field strength is of order 
l /ku  Iln Ical times the direct field. 

When the incident field is due to the quadrupole 

it is found that the scattered field has strength equal to the direct field, with no 
radiation from the volume pulsation mode. 

When the incident potential is given as 

the scattered mode amplitude for each m is found to be 

B, = 0. (79) 

It follows that the scattered field is of order ( l / ku)  times the direct field strength, 
with no radiation from the symmetric mode, rn = 0. It is easy to see that the same 
result applies to the quadrupole field given by 

As for quadrupoles involving an axial direction, it can be shown in a manner 
similar to the above that, for the (T - x )  quadrupole, 

where 
Finally, the ( x  - x )  quadrupole has both the direct and the scattered fields of 

equal strength, provided that (OJ/Q)~ Iln (Icssin 181)1 $: 1, for which value there 
is no scatter from the symmetric mode m = 0. 

and OD denote the scattered and direct potentials, respectively. 

An initial value problem 

disturbed from rest by a point impulse applied at time t = r .  
In this section we consider the initial value problem, where the vortex is 

The solution to this problem is obtained from the periodic source solution by 
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integrating over all possible frequencies, which by (52) and (53) gives @ as a 
generalized function : 

x exp [im(l- Z,)] exp (iax) exp [ - iw(t  - T)] dado H(t  - T) 

x exp ( i a z ) e x p [ - i w ( t - ~ ) ] H ( t - ~ ) d a d w .  (83) 

The causality condition has been used to eliminate the free-wave solutions. The 
second term in (83) gives no contribution, since [(u/Q)21n/3a + 11 never vanishes. 
Performing the a integration in the first term gives 

m 

m=kO 

x exp (ikr) exp [&in(m + l)] exp [ - iw( t  - T ) ]  H(t  - T )  dw, (84) 
which can be evaluated as 

exp ( ik l r )  
r 

exp [ - iw,(t - T)] 
m 

CD = ni C Iml*exp[&n(m+ l)]  
- w  

where 

exp [ - iw,(t - T)] H(t  - T ) ,  (85) 1 exp (ik,r)  
J,(@) 

and k, and k, are the associated wave-numbers. It is seen from (86) that the 
field of a point source applied a t  time t = T, satisfying the required boundary 
conditions, is a superposition of the resonant modes. These survive indefinitely, 
even though energy is lost to their associated acoustic field. 

To derive the response of the vortex to  a periodic excitation at  a resonant 
frequency w1 switched on a t  a time t = 0, we form the convolution of 

H ( t )  exp ( -  iwl t ) ,  

with (85), i.e. the response from a point impulse at  time t = T. This gives 

t 
exp (ik, r )  

r 

m m 

CD = n i s  H ( T )  exp ( - i w , ~ )  
- -m  

- m  

exp[-iw,(t-~)] H ( t - T ) d T  (87) 
exp (ik,r)  

xexp[-io,(t-~)]-J,(k,a) ~- 
r 1 

exp (ik, r )  
r 

texp ( - iw, t )  
00 

= ;rri c lmltexp [gin(m+ I)] 
m?=0 
- -m 

exp ( ik ,r)  exp ( -iw,t) 

exp ( ik2r)  exp ( - i w  t 
r w1- w2 

r "1 - 0 2  

+ iJm(k2a) 

- iJm(k,a) ) ] H ( t ) .  
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From this expression, it is seen that, when the vortex is excited by a periodic 
disturbance at the resonant frequency w1 switched on at  time t = 0, the response 
is a superposition of the resonant modes of w1 and w2, the amplitude of the w1 
modes increasing without bound. This algebraic instability will eventually lead 
to breakdown of the flow model. 

Summary and conclusions 
The scattering properties of a multipole driven cavitated line vortex have been 

considered. We find that the dominant feature is that Kelvin’s resonant modes 
remain undamped by compressibility effects, and can exist in a neutral condition, 
despite the continual energy demands of the distant radiation field. When 
excited by an external source those modes grow without limit according to linear 
theory, so that the flow is subject to a driven instability. The off-resonance 
scattered field is a function of the parameter ( W / Q ) ~  Iln kal, which measures the 
relative importance of the compressibility and inertia effects in the exterior 
fluid, compared to the ‘stiffness’ of the cavity arising from the radial pressure 
gradient in the steady vortex flow. 

The near field of a line source is scattered to infinity, its strength there being 
of order S21n ka times the direct field when ( W / Q ) ~  Iln kal < 1. On the other hand, 
when ( ~ / a ) ~  Ilnkal 9 1, the scattered and direct fields are of equal strength at 
infinity. The near field of a radial line dipole is scattered to infinity with strength 
of order S2/ka or l / (ka  Ilnkal) times the direct field, according as ( w / Q ) ~  IlnkaJ 
is small or large compared to unity, respectively, while, for a radial line quad- 
rupole, its near field is scattered with strength of order (S/ka)2 or ( l / k ~ ) ~  l/lln kal , 
according as the parameter 

It is found that the near field of a simple point source is scattered with strength 
of the same order as that of the direct field, provided ( U / Q ) ~  Iln kal =t= 1. When this 
parameter has value unity, there is no radiation from the volume pulsation mode, 
m = 0. At all other conditions, the scattered field is dominated by the radiation 
from the zeroth mode, the contribution of all other modes being an order of 
magnitude less. 

The near field of a radial point dipole is scattered with strength proportional 
to l /ka  or l /ka  IlnkaI times the direct field strength, according as ( U / Q ) ~  IlnkaI 
is small or large compared to unity, respectively, while the near field of a radial 
point quadrupole is scattered with strength proportional to ( l / k ~ ) ~  or ( l / k ~ ) ~  
I /  I In kal . The scattered fields are again dominated by radiation from the volume 
pulsation mode, m = 0. 

In  the case of a tangential dipole, its near field is scattered with strength of the 
same order as the direct field, no radiation arising from the zeroth mode. Both 
the scattered and direct fields of an axial dipole are also of equal strength, pro- 
vided ( W / Q ) ~  Iln (ha sin 101) I =+ 1. When this condition is violated, the radiation 
from the volume pulsation mode vanishes. 

The fields induced by quadrupoles other than the radial quadrupole, and quad- 
rupoles involving an axial direction, have strengths O( l /ka) times the direct 
fields at  infinity. For the quadrupole, which has one axis along the z-axis, and the 

Iln kal is small or large. 



688 J. E. Ffowcs Williams and S.  O’Shea 

other along the radius, the scattered field has strength O(l/ka) or O(l/ka jlnkal) 
times the direct field, depending on the magnitude of the parameter 

(w/s2)2 Iln(kasin [el)[. 
The scattered fields of both the ($ - x )  quadrupole and ( z  - z )  quadrupole are 

equal in strength at  infinity, except when ( ~ / s 2 ) ~  Iln (kasin 181)1 = 1 in the case 
of the ( z  - z )  quadrupole. At this value of the parameter, the radiation from the 
volume pulsation mode, which is otherwise the dominant mode, vanishes. 

On linear theory, there is infinite scattering at  the vortex resonance frequencies, 
a condition that will no doubt lead to breakdown of the equations-and possibly 
the vortex ! 
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